For an ideal transformer, we have assumed that there are no core losses and copper losses. For practical transformers, these two losses cannot be neglected. At no-load condition, the primary current is not fully reactive and it supplies (i) iron loss in the core, that is, hysteresis loss and eddy current loss and (ii) very small amount of copper loss in the primary. There is copper loss in the secondary because it is an open circuit. The no-load current lags behind V1 by an angle θ0, which is less than 90° (around 80°–85°). The no-load input power is given by
W0=V1I0cosθ0 (1.8)
where cosθ0 is the no-load power factor. Figure 1.23 shows the no-load phasor diagram of a practical transformer. From Figure 1.23, the no-load primary current (I0) has the following two components:
From Figure 1.23, we have
and
The following points are most important:
Figure 1.23 Phasor Diagram at No-Load
Figure 1.24 shows the equivalent circuit of the transformer at no load.
Figure 1.24 Equivalent Circuit of Transformer at No-load
Example 1.5 The no-load current of a 4,400/440 V, sinlge-phase, 50 Hz transformer is0.04. It consumes power 80 W at no load when supply is given to LV side and HV side is kept open. Calculate the following:
(i) Power factor of no-load current.
(ii) Iron loss component of current.
(iii) Magnetizing component of current.
Solution
W0 W, I0 =0.04 A, V1 = 4,400 V
Humankind has become extremely dependent on electricity, without it we can’t run the household, keep…
[1] Define the term synchronous speed [Dec-2003] For synchronous machines there exists a fixed relationship…
We shared a lot of interview questions on electrical machines, power system and power electronics. Today we…
DIESEL POWER STATION A generating station in which diesel engine is used as the prime…
Q:Why syn. generators are used for the production of electricity? A:synchronous machines have capability to…
Hydro-electric Power Station A generating station which utilises the potential energy of water at a…