Transformer is a static device that converts one voltage level to another voltage level. Due to occurrence of iron and copper losses, the transformer gets heated. In order to avoid deterioration of insulation, dissipation of heat is required to keep the temperature of the winding within a limited value. Since transformer is a static device, its cooling is more difficult than that of a rotating machine. Rotating machine creates a turbulent air flow, which helps in removing the heat generated due to losses. The losses in a transformer are comparatively small. The coolants used in transformer are: (i) air and (ii) oil.
The dry-type transformer uses air as coolant, whereas oil-immersed transformer uses oil as cool-ant. The heat produced in dry-type transformers is conducted across the core and windings. Finally, the heat dissipates from the outer surfaces of the windings to the surrounding air through convection. The heat generated inside the core and windings of an oil-immersed transformer is conducted across them to their surfaces. This heat produced is transferred by the oil to the walls of the tank through convection.
The cooling methods used in transformers up to 25 kVA size and of dry type are discussed below:
Generally most of the transformers are of oil-immersed types because oil provides better insulation than air due to its better conduction heat. Mineral oil is used for this purpose. The following cooling methods are used for oil-immersed transformers.
Oil-immersed self-cooled transformers: The transformer is immersed in oil. The heat generated in cores and windings is passed to the oil by conduction. Therefore, oil in contact with the heated parts rises and cool oil takes its place. The heat is transferred to the tank walls by natural oils.
Figure 1.18 Air Blast Cooling for High-capacity Transformers
Finally, ambient air takes this heat. To increase the heat dissipating capacity, corrugations, fins, tubes (shown in Figure 1.18) and radiators are to be provided in Figure 1.17(b). In oil natural cool-ing, there is no chance to clog the ducts and hence windings are free from the effects of moisture.
Table 1.1 summarizes methods of cooling of transformers.
Table 1.1 Methods of Cooling of Transformers
Humankind has become extremely dependent on electricity, without it we can’t run the household, keep…
[1] Define the term synchronous speed [Dec-2003] For synchronous machines there exists a fixed relationship…
We shared a lot of interview questions on electrical machines, power system and power electronics. Today we…
DIESEL POWER STATION A generating station in which diesel engine is used as the prime…
Q:Why syn. generators are used for the production of electricity? A:synchronous machines have capability to…
Hydro-electric Power Station A generating station which utilises the potential energy of water at a…