As stated earlier, whether a machine is d.c. generator or a motor the construction basically remains the same as shown in the Fig. 1.
Fig.1 A cross section of typical d.c. machine |
It consists of the following parts :
1.1 Yoke
a) Functions :
b) Choice of Material : To provide low reluctance path, it must be made up of some magnetic material. It is prepared by using cast iron because it is cheapest. For large machines rolled steel, cast steel, silicon steel is used which provides high permeability i.e. low reluctance and gives good mechanical strength.
1.2 Poles
Each pole is divided into two parts namely, I) Pole core and II) Pole shoe.
This is shown in the Fig. 2.
Fig. 2 Pole Structure |
a) Functions of pole core and pole shoe :
b) Choice of Material : It is made up of magnetic material like cast iron or cast steel. As it requires a definite shape and size, laminated construction is used. The laminations of required size and shape are stamped together to get a pole which is then bolted to the yoke.
1.3 Field Winding (F1-F2)
The field winding is wound on the pole core with a definite direction.
a) Functions : To carry current due to which pole core, on which the field winding is placed behaves as an electromagnet, producing necessary flux.
As it helps in producing the magnetic field i.e. exciting the pole as an electromagnet it is called Field winding or Exciting winding.
b) Choice of material : It has to carry current hence obviously made up of some conducting material. So aluminium or copper is the choice. But field coils are required to take any type of shape and bend about pole core and copper has good pliability i.e. it can bend easily. So copper is the proper choice.
Note : Field winding is divided into various coils called field coils. These are connected in series with each other and in such a direction around pole cores, such that alternate ‘N’ and ‘S’ poles are formed.
By using right hand thumb rule for current carrying circular conductor, it can be easily determined that how a particular core is going to behave as ‘N’ or ‘S’ for a particular winding direction around it. The direction of winding and flux can be observed in the Fig 3.
Fig. 3 |
1.4 Armature
It is further divided into two parts namely,
I) Armature core and II) Armature winding
I) Armature core : Armature core is cylindrical in shape mounted on the shaft. It consists of slots on its periphery and the air ducts to permit the air flow through armature which serves cooling purpose.
a) Functions :
b) Choice of Material : As it has to provide a low reluctance path to the flux, it is made up of magnetic material like cast iron or cast steel.
It is made up of laminated construction to keep eddy current loss as low as possible. A single circular lamination used for the construction of the armature core is shown in the Fig. 4.
Fig. 4 Single Circular lamination of Armature core |
II) Armature winding : Armature winding is nothing but the interconnection of the armature conductors, placed in the slots provided on the armature core periphery. When the armature is rotated, in case of generator, magnetic flux gets cut by armature conductors and e.m.f. gets induced in them.
a) Functions :
b) Choice of material : As armature winding carries entire current which depends on external load, it has to be made up of conducting material, which is copper.
Armature winding is generally former wound. The conductors are placed in the armature slots which are lined with tough insulating material.
1.5 Commutator
We have seen earlier that the basic nature of e.m.f. induced in the armature conductors is alternating. This needs rectification in case of d.c. generator, which is possible by a device called commutator.
a) Functions :
b) Choice of material : As it collects current from armature, it is also made up of copper segments.
It is cylindrical in shape and is made up of wedge shaped segments of the hard drawn, high conductivity copper. These segments are insulated from each other by thin layer of mica. Each commutator segment is connected to the armature conductor by means of copper lug or strip. This connection is shown in the Fig. 5.
Fig. 5 Commutator |
1.6 Brushes and Brush Gear
Brushes are stationary and resting on the surface of the commutator.
a) Function : To collect current from commutator and make it available to the stationary external circuit.
b) Choice of material : Brushes are normally made up of soft material like carbon.
Brushes are rectangular in shape. They are housed in brush holders, which are usually of box type. The brushes are made to press on the commutator surface by means of a spring, whose tension can be adjusted with the help of lever. A flexible copper conductor called pig tail is used to connect the brush to the external circuit. To avoid wear and tear of commutator, the brushes are made up of soft material like carbon.
1.7 Bearings
Ball-bearings are usually used as they are more reliable. For heavy duty machines, roller bearings are prederred.
Humankind has become extremely dependent on electricity, without it we can’t run the household, keep…
[1] Define the term synchronous speed [Dec-2003] For synchronous machines there exists a fixed relationship…
We shared a lot of interview questions on electrical machines, power system and power electronics. Today we…
DIESEL POWER STATION A generating station in which diesel engine is used as the prime…
Q:Why syn. generators are used for the production of electricity? A:synchronous machines have capability to…
Hydro-electric Power Station A generating station which utilises the potential energy of water at a…